

ABSOLUTE
JAVA™

 6th Edition
Global Edition

This page intentionally left blank

ABSOLUTE
JAVA™

 6th Edition

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Global Edition

Walter Savitch
University of California, San Diego

Contributor

Kenrick Mock
University of Alaska Anchorage

Vice President and Editorial Director, ECS: Marcia J.
Horton

Acquisitions Editor: Matt Goldstein
Assistant Acquisitions Editor, Global Edition:

Aditee Agarwal
Editorial Assistant: Kelsey Loanes
Product Marketing Manager: Bram Van Kempen
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Production Project Manager: Rose Kernan
Project Editor, Global Edition: Radhika Raheja
Program Manager: Carole Snyder
Global HE Director of Vendor Sourcing and Procurement:

Diane Hynes

Director of Operations: Nick Sklitsis
Operations Specialist: Maura Zaldivar-Garcia
Cover Designer: Lumina Datamatics
Manager, Rights and Permissions: Rachel Youdelman
Associate Project Manager, Rights and Permissions:

Timothy Nicholls
Senior Manufacturing Controller, Production, Global

Edition: Trudy Kimber
Media Production Manager, Global Edition:

Vikram Kumar
Full-Service Project Management: Niraj Bhatt,

iEnergizer Aptara®, Ltd.
Composition: iEnergizer Aptara®, Ltd.
Cover Image: © LeicherOliver/Shutterstock

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The right of Walter Savitch and Kenrick Mock to be identified as the author of this work has been asserted
by him in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Absolute JAVA, 6th Edition, 9781292109220
9780134041674 by Walter Savitch and Kenrick Mock published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency
Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the
author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any
affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 129210922X

ISBN 13: 9781292109220

Typeset in Adobe Garamond 10.5/12 by iEnergizer Aptara®, Ltd.

Printed and bound by Courier Westford in Malaysia

http://www.pearsonglobaleditions.com

This book is designed to serve as a textbook and reference for programming in the
Java language. Although it does include programming techniques, it is organized
around the features of the Java language rather than any particular curriculum of
programming techniques. The main audience I had in mind when writing this book
was undergraduate students who have not had extensive programming experience with
the Java language. As such, it would be a suitable Java text or reference for either a first
programming course or a later computer science course that uses Java. This book is
designed to accommodate a wide range of users. The introductory chapters are written
at a level that is accessible to beginners, while the boxed sections of those chapters
serve to quickly introduce more experienced programmers to basic Java syntax. Later
chapters are still designed to be accessible, but are written at a level suitable for students
who have progressed to these more advanced topics.

CHANGES IN THIS EDITION

This sixth edition presents the same programming philosophy as the fifth edition. For
instructors, you can teach the same course, presenting the same topics in the same
order with no changes in the material covered or the chapters assigned. The changes to
this edition consist almost exclusively of supplementary material added to the chapters
of the previous edition, namely:

■ An introduction to functional programming with Java 8’s lambda expressions.
■ Additional content and examples on looping, networking, and exception handling.
■ Introduction to building GUIs using JavaFX.
■ Fifteen new programming projects.
■ Five new video notes for a total of 51 video notes. These videos cover specific topics

and offer solutions to selected programming projects. The videos walk students
through the process of problem solving and coding to reinforce key programming
concepts. An icon appears in the margin of the book when a video is available about
the corresponding topic in the text.

NO NONSTANDARD SOFTWARE

Only classes in the standard Java libraries are used. No nonstandard software is used
anywhere in the book.

JAVA COVERAGE

All programs have been tested with Java 8. Oracle is not proposing any changes to
future versions of Java that would affect the approach in this book.

Preface

 5

6 Preface

OBJECT-ORIENTED PROGRAMMING

This book gives extensive coverage of encapsulation, inheritance, and polymorphism
as realized in the Java language. The chapters on Swing GUIs provide coverage of and
extensive practice with event driven programming.

FLEXIBILITY IN TOPIC ORDERING

This book allows instructors wide latitude in reordering the material. This is important
if a book is to serve as a reference. It is also in keeping with my philosophy of writing
books that accommodate themselves to an instructor’s style rather than tying the
instructor to an author’s personal preference of topic ordering. With this in mind, each
chapter has a prerequisite section at the beginning; this section explains what material
must be covered before doing each section of the chapter. Starred sections, which are
explained next, further add to flexibility.

STARRED SECTIONS

Each chapter has a number of starred (★) sections, which can be considered optional.
These sections contain material that beginners might find difficult and that can be
omitted or delayed without hurting the continuity of the text. It is hoped that eventually
the reader would return and cover this material. For more advanced students, the
starred sections should not be viewed as optional.

ACCESSIBLE TO STUDENTS

It is not enough for a book to present the right topics in the right order. It is not even
enough for it to be clear and correct when read by an instructor or other expert. The
material needs to be presented in a way that is accessible to the person who does not yet
know the content. Like my other textbooks that have proven to be very popular, this
book was written to be friendly and accessible to the student.

SUMMARY BOXES

Each major point is summarized in a short boxed section. These boxed sections are
spread throughout each chapter. They serve as summaries of the material, as a quick
reference source, and as a way to quickly learn the Java syntax for features the reader
knows about in general but for which he or she needs to know the Java particulars.

SELF-TEST EXERCISES

Each chapter contains numerous Self-Test Exercises at strategic points in the
chapter. Complete answers for all the Self-Test Exercises are given at the end of
each chapter.

Preface 7

VIDEO NOTES

VideoNotes are step-by-step videos that guide readers through the solution to an end-of-
chapter problem or further illuminate a concept presented in the text. Icons in the text
indicate where a VideoNote enhances a topic. Fully navigable problems allow for self-
paced instruction. VideoNotes are located at www.pearsonglobaleditions.com/savitch.

OTHER FEATURES

Pitfall sections, programming tip sections, and examples of complete programs with
sample I/O are given throughout each chapter. Each chapter ends with a summary
section and a collection of programming projects suitable to assign to students.

HOW TO ACCESS INSTRUCTOR AND STUDENT RESOURCE
MATERIALS

Online Practice and Assessment with . MyProgrammingLab
helps students fully grasp the logic, semantics, and syntax of programming. Through
practice exercises and immediate, personalized feedback, MyProgrammingLab improves
the programming competence of beginning students who often struggle with the basic
concepts and paradigms of popular high-level pro- gramming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hun-
dreds of small practice problems organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and syntax of their code
submissions and offers targeted hints that enable students to figure out what went
wrong—and why. For instructors, a comprehensive gradebook tracks correct and
incorrect answers and stores the code inputted by students for review.

For a full demonstration, to see feedback from instructors and students, or to get
started using MyProgrammingLab in your course, visit www.myprogramminglab.com.

SUPPORT MATERIAL

The following support materials are available to all users of this Global Editions book
at www.pearsonglobaleditions.com/savitch:

■ Source code from the book

The following resources are available to qualified instructors only at www.
pearsonglobaleditions.com/savitch. Please contact your local sales representative for
access information:

■ Instructor’s Manual with Solutions
■ PowerPoint® slides

ACKNOWLEDGMENTS
Numerous individuals have contributed invaluable help and support in making this
book happen: My former editor, Susan Hartman at Addison-Wesley, first conceived of
the idea for this book and worked with me on the first editions; My current editor, Matt

VideoNote

http://www.pearsonglobaleditions.com/savitch
http://www.myprogramminglab.com
http://www.pearsonglobaleditions.com/savitch
http://www.pearsonglobaleditions.com/savitch
http://www.pearsonglobaleditions.com/savitch

8 Preface

Goldstein, provided support and inspiration for getting subsequent editions reviewed,
revised, and out the door; Kelsey Loanes, Rose Kernan, Demetrius Hall, and the other
fine people at Pearson also provided valuable assistance and encouragement.

The following reviewers provided corrections and suggestions for this book. Their
contributions were a great help. I thank them all. In alphabetical order they are:

Jim Adams Chandler-Gilbert Community College

Gerald W. Adkins Georgia College & State University

Dr. Bay Arinze Drexel University

Tamara Babaian Bentley University

James Baldo George Mason University

Prof. Richard G. Baldwin Austin Community College

Kevin Bierre Rochester Institute of Technology

Jon Bjornstad Gavilan College

Janet Brown-Sederberg Massasoit Community College

Tom Brown Texas A&M University, Commerce

Charlotte Busch Texas A&M University, Corpus Christi

Stephen Chandler NW Shoals Community College

Hong Cheng Southern Arkansas University

KY Daisy Fan Cornell University

Adrienne Decker University of Buffalo

Brian Downs Century College

Jeffrey Edgington University of Denver

Keith Frikken Miami University

Ahmad Ghafarian North Georgia College & State University

Arthur Geis College of DuPage

Massoud Ghyam University of Southern California

Susan G. Glenn Gordon College

Nigel Gwee Louisiana State University

Judy Hankins Middle Tennessee State University

May Hou Norfolk State University

Sterling Hough NHTI

Chris Howard DeVry University

Eliot Jacobson University of California, Santa Barbara

Balaji Janamanchi Texas Tech University

Suresh Kalathur Boston University

Edwin Kay Lehigh University

Dr. Clifford R. Kettemborough IT Consultant and Professor

Preface 9

Frank Levey Manatee Community College
Xia Lin Drexel University
Mark M. Meysenburg Doane College
Sridhar P. Nerur The University of Texas at Arlington
Hoang M. Nguyen Deanza College
Rick Ord University of California, San Diego
Prof. Bryson R. Payne North Georgia College & State University
David Primeaux Virginia Commonwealth University
Neil Rhodes University of California, San Diego
W. Brent Seales University of Kentucky
Lili Shashaani Duquesne University
Riyaz Sikora The University of Texas at Arlington
Christopher Simpkins Georgia Tech
Jeff Six University of Delaware
Donald J Smith Community College of Allegheny County
Tom Smith Skidmore College
William Smith Tulsa Community College
Xueqing (Clare) Tang Governors State University
Ronald F. Taylor Wright State University
Thomas VanDrunen Wheaton College
Shon Vick University of Maryland, Baltimore County
Natalie S. Wear University of South Florida
Dale Welch University of West Florida
David A. Wheeler
Wook-Sung Yoo Gannon University

Special thanks goes to Kenrick Mock (University of Alaska Anchorage) who
executed the updating of this edition. He once again had the difficult job of satisfying
me, the editor, and himself. I thank him for a truly excellent job.
 Walter Savitch

Pearson wishes to thank and acknowledge the following people for their work on the
Global Edition:

Contributors
Vikas Deep Dhiman Amity University
Madhurima Hooda Amity University

Reviewers
Manasa Rengarer NMAM Institute of Technology
S.H. Chung Wawasan Open University
Issam A. El-Moughrabi Gulf University of Science and Technology

LOCATION OF VIDEONOTES IN THE TEXT
www.pearsonglobaleditions.com/savitch

Chapter 1 Compiling a Java Program, page 42
Solution to Programming Project 1.7, page 88

Chapter 2 Using printf, page 94
Pitfalls Involving nextLine(), page 115
Solution to Programming Project 2.11, page 129
Solution to Programming Project 2.12, page 130

Chapter 3 Nested Loop Example, page 177
Debugging Walkthrough, page 184
Generating Random Numbers, page 191
Solution to Programming Project 3.9, page 202
Solution to Programming Project 3.13, page 203

Chapter 4 Information Hiding Example, page 239
Example Using the StringTokenizer Class on a CSV File, page 279
Solution to Programming Project 4.9, page 287

Chapter 5 Deep Copy vs. Shallow Copy Example, page 353
Solution to Programming Project 5.9, page 376

Chapter 6 Arrays of Objects, page 390
Solution to Programming Project 6.8, page 454
Solution to Programming Project 6.15, page 456

Chapter 7 Inheritance Walkthrough, page 464
Solution to Programming Project 7.3, page 509
Solution to Programming Project 7.5, page 511

Chapter 8 Late Binding Example, page 518
Solution to Programming Project 8.1, page 550
Solution to Programming Project 8.9, page 553

Chapter 9 Solution to Programming Project 9.1, page 609
Solution to Programming Project 9.7, page 611

Chapter 10 Reading a Text File, page 625
Solution to Programming Project 10.1, page 679
Solution to Programming Project 10.9, page 681

Chapter 11 Recursion and the Stack, page 696
Solution to Programming Project 11.3, page 720

Chapter 12 Solution to Programming Project 12.9, page 746

Chapter 13 Solution to Programming Project 13.1, page 790
Solution to Programming Project 13.11, page 793

Chapter 14 Solution to Programming Project 14.7, page 836

Chapter 15 Walkthrough of the Hash Table Class, page 906
Solution to Programming Project 15.1, page 931

VideoNote

http://www.pearsonglobaleditions.com/savitch

Chapter 16 Using HashMap with a Custom Class, page 948
Solution to Programming Project 16.3, page 975
Solution to Programming Project 16.5, page 976

Chapter 17 GUI Layout Using an IDE, page 1009
Solution to Programming Project 17.1, page 1053

Chapter 18 Walkthrough of a Simple Drawing Program, page 1082
Solution to Programming Project 18.7, page 1117

Chapter 19 Walkthrough of a Program with Race Conditions, page 1134
Networking with Streams, page 1138
Functional Programming Example, page 1172
Solution to Programming Project 19.3, page 1196
Solution to Programming Project 19.11, page 1197

Chapter 20 No video notes (Chapter on website)

This page intentionally left blank

 Chapter 1 GETTING STARTED 33

 Chapter 2 CONSOlE INpuT AND OuTpuT 89

 Chapter 3 FlOW OF CONTROl 131

 Chapter 4 DEFINING ClASSES I 205

 Chapter 5 DEFINING ClASSES II 291

 Chapter 6 ARRAyS 377

 Chapter 7 INHERITANCE 459

 Chapter 8 pOlymORpHISm AND AbSTRACT ClASSES 515

 Chapter 9 ExCEpTION HANDlING 555

 Chapter 10 FIlE I/O 613

 Chapter 11 RECuRSION 683

 Chapter 12 uml AND pATTERNS 725

 Chapter 13 INTERFACES AND INNER ClASSES 747

 Chapter 14 GENERICS AND THE ArrayList ClASS 795

 Chapter 15 lINkED DATA STRuCTuRES 839

 Chapter 16 COllECTIONS, mApS AND ITERATORS 935

 Chapter 17 SWING I 981

 Chapter 18 SWING II 1057

 Chapter 19 JAVA NEVER ENDS 1119

 Chapter 20 ApplETS AND HTml (online at

www.pearsonglobaleditions.com/savitch)

 Appendix 1 kEyWORDS 1199

 Appendix 2 pRECEDENCE AND ASSOCIATIVITy RulES 1201

 Appendix 3 ASCII CHARACTER SET 1203

 Appendix 4 FORmAT SpECIFICATIONS FOR printf 1205

 Appendix 5 SummARy OF ClASSES AND INTERFACES 1207

 INDEx 1275

Brief Contents

 13

http://www.pearsonglobaleditions.com/savitch

This page intentionally left blank

 Chapter 1 Getting Started 33

 1.1 INTRODuCTION TO JAVA 34
Origins of the Java Language ★ 34
Objects and Methods 35
Applets ★ 36
A Sample Java Application Program 37
Byte-Code and the Java Virtual Machine 40
Class Loader ★ 42
Compiling a Java Program or Class 42
Running a Java Program 43
TIP: Error Messages 44

 1.2 ExpRESSIONS AND ASSIGNmENT STATEmENTS 45
Identifiers 45
Variables 47
Assignment Statements 48
TIP: Initialize Variables 50
More Assignment Statements ★ 51
Assignment Compatibility 52
Constants 53
Arithmetic Operators and Expressions 55
Parentheses and Precedence Rules ★ 56
Integer and Floating-Point Division 58
PITFALL: Round-Off Errors in Floating-Point Numbers 59
PITFALL: Division with Whole Numbers 60
Type Casting 61
Increment and Decrement Operators 62

 1.3 THE ClASS String 65
String Constants and Variables 65
Concatenation of Strings 66
Classes 67
String Methods 69
Escape Sequences 74
String Processing 75
The Unicode Character Set ★ 75

Contents

 15

16 Contents

 1.4 Program Style 78
Naming Constants 78
Java Spelling Conventions 80
Comments 81
Indenting 82

Chapter Summary 83
Answers to Self-Test Exercises 84
Programming Projects 86

 Chapter 2 Console Input and output 89

 2.1 SCreen outPut 90
System.out.println 90
TIP: Different Approaches to Formatting Output 93
Formatting Output with printf 93
TIP: Formatting Monetary Amounts with printf 97
TIP: Legacy Code 98
Money Formats Using NumberFormat ★ 99
Importing Packages and Classes 102
The DecimalFormat Class ★ 104

 2.2 ConSole InPut uSIng the Scanner ClaSS 108
The Scanner Class 108
PITFALL: Dealing with the Line Terminator, '\n' 115
The Empty String 116
TIP: Prompt for Input 116
TIP: Echo Input 116
ExAMPLE: Self-Service Checkout 118
Other Input Delimiters 119

 2.3 IntroduCtIon to FIle InPut 121
The Scanner Class for Text File Input 121

Chapter Summary 124
Answers to Self-Test Exercises 124
Programming Projects 127

 Chapter 3 Flow of Control 131

 3.1 BranChIng meChanISm 132
if-else Statements 132
Omitting the else 133
Compound Statements 134
TIP: Placing of Braces 135
Nested Statements 136

Contents 17

Multiway if-else Statement 136
ExaMplE: State Income Tax 137
The switch Statement 139
pITFall: Forgetting a break in a switch Statement 143
The Conditional Operator ★ 144

 3.2 Boolean expressions 145
Simple Boolean Expressions 145
pITFall: Using = in place of == 146
pITFall: Using == with Strings 147
lexicographic and alphabetic Order 148
Building Boolean Expressions 151
pITFall: Strings of Inequalities 152
Evaluating Boolean Expressions 152
TIp: Naming Boolean Variables 155
Short-Circuit and Complete Evaluation 156
precedence and associativity Rules 157

 3.3 loops 164
while Statement and do-while Statement 164
algorithms and pseudocode 166
ExaMplE: averaging a list of Scores 169
The for Statement 170
The Comma in for Statements 173
TIp: Repeat N Times loops 175
pITFall: Extra Semicolon in a for Statement 175
pITFall: Infinite loops 176
Nested loops 177
The break and continue Statements ★ 180
The exit Statement 181

 3.4 DeBugging 182
loop Bugs 182
Tracing Variables 182
General Debugging Techniques 183
ExaMplE: Debugging an Input Validation loop 184
preventive Coding 188
assertion Checks ★ 189

 3.5 ranDom numBer generation ★ 191
The Random Object 191
The Math.random() Method 193

Chapter Summary 194
answers to Self-Test Exercises 194
programming projects 200

18 Contents

 Chapter 4 Defining Classes I 205

 4.1 CLASS DEFINITIONS 206
Instance Variables and Methods 209
More about Methods 212
TIP: Any Method Can Be Used as a void Method 216
Local Variables 218
Blocks 219
TIP: Declaring Variables in a for Statement 220
Parameters of a Primitive Type 220
PITFALL: Use of the Terms “Parameter” and “Argument” 227
Simple Cases with Class Parameters 229
The this Parameter 229
Methods That Return a Boolean Value 231
The Methods equals and toString 234
Recursive Methods 237
TIP: Testing Methods 237

 4.2 INFORMATION HIDING AND ENCAPSULATION 239
public and private Modifiers 240
ExAMPLE: Yet Another Date Class 241
Accessor and Mutator Methods 242
TIP: A Class Has Access to Private Members of All Objects of the Class 247
TIP: Mutator Methods Can Return a Boolean Value ★ 248
Preconditions and Postconditions 249

 4.3 OVERLOADING 250
Rules for Overloading 250
PITFALL: Overloading and Automatic Type Conversion 254
PITFALL: You Cannot Overload Based on the Type Returned 256

 4.4 CONSTRUCTORS 258
Constructor Definitions 258
TIP: You Can Invoke Another Method in a Constructor 266
TIP: A Constructor Has a this Parameter 266
TIP: Include a No-Argument Constructor 267
ExAMPLE: The Final Date Class 268
Default Variable Initializations 269
An Alternative Way to Initialize Instance Variables 269
ExAMPLE: A Pet Record Class 270
The StringTokenizer Class ★ 274

Chapter Summary 279
Answers to Self-Test Exercises 280
Programming Projects 285

Contents 19

 Chapter 5 Defining Classes II 291

 5.1 STATIC METHODS AND STATIC VARIABLES 293
Static Methods 293
PITFALL: Invoking a Nonstatic Method Within a Static Method 295
TIP: You Can Put a main in Any Class 296
Static Variables 300
The Math Class 305
Wrapper Classes 309
Automatic Boxing and Unboxing 310
Static Methods in Wrapper Classes 312
PITFALL: A Wrapper Class Does Not Have a No-Argument Constructor 315

 5.2 REFERENCES AND CLASS PARAMETERS 316
Variables and Memory 317
References 318
Class Parameters 323
PITFALL: Use of = and == with Variables of a Class Type 327
The Constant null 329
PITFALL: Null Pointer Exception 330
The new Operator and Anonymous Objects 330
ExAMPLE: Another Approach to Keyboard Input ★ 331
TIP: Use Static Imports ★ 333

 5.3 USING AND MISUSING REFERENCES 335
ExAMPLE: A Person Class 336
PITFALL: null Can Be an Argument to a Method 341
Copy Constructors 345
PITFALL: Privacy Leaks 347
Mutable and Immutable Classes 351
TIP: Deep Copy versus Shallow Copy 353
TIP: Assume Your Coworkers Are Malicious 354

 5.4 PACKAGES AND javadoc 354
Packages and import Statements 355
The Package java.lang 356
Package Names and Directories 356
PITFALL: Subdirectories Are Not Automatically Imported 359
The Default Package 359
PITFALL: Not Including the Current Directory in Your Class Path 360
Specifying a Class Path When You Compile ★ 360
Name Clashes ★ 361
Introduction to javadoc ★ 362
Commenting Classes for javadoc ★ 362
Running javadoc ★ 364

20 Contents

Chapter Summary 366
Answers to Self-Test Exercises 367
Programming Projects 371

 Chapter 6 Arrays 377

 6.1 INTRODUCTION TO ARRAYS 378
Creating and Accessing Arrays 379
The length Instance Variable 382
TIP: Use for Loops with Arrays 384
PITFALL: Array Indices Always Start with Zero 384
PITFALL: Array Index Out of Bounds 384
Initializing Arrays 385
PITFALL: An Array of Characters Is Not a String 387

 6.2 ARRAYS AND REFERENCES 388
Arrays Are Objects 388
PITFALL: Arrays with a Class Base Type 390
Array Parameters 390
PITFALL: Use of = and == with Arrays 392
Arguments for the Method main ★ 397
Methods that Return an Array 399

 6.3 PROGRAMMING WITH ARRAYS 400
Partially Filled Arrays 401
ExAMPLE: A Class for Partially Filled Arrays 404
TIP: Accessor Methods Need Not Simply Return Instance Variables 408
The “for-each” Loop ★ 408
Methods with a Variable Number of Parameters ★ 412
ExAMPLE: A String Processing Example ★ 415
Privacy Leaks with Array Instance Variables 416
ExAMPLE: Sorting an Array 420
Enumerated Types ★ 424
TIP: Enumerated Types in switch Statements ★ 429

 6.4 MULTIDIMENSIONAL ARRAYS 431
Multidimensional Array Basics 431
Using the length Instance Variable 434
Ragged Arrays ★ 435
Multidimensional Array Parameters and Returned Values 435
ExAMPLE: A Grade Book Class 436

Chapter Summary 442
Answers to Self-Test Exercises 443
Programming Projects 450

Contents 21

 Chapter 7 Inheritance 459

 7.1 INHERITANCE BASICS 460
Derived Classes 461
Overriding a Method Definition 471
Changing the Return Type of an Overridden Method 471
Changing the Access Permission of an Overridden Method 472
PITFALL: Overriding versus Overloading 473
The super Constructor 474
The this Constructor 476
TIP: An Object of a Derived Class Has More than One Type 477
PITFALL: The Terms Subclass and Superclass 480
ExAMPLE: An Enhanced StringTokenizer Class ★ 481

 7.2 ENCAPSULATION AND INHERITANCE 484
PITFALL: Use of Private Instance Variables from the Base Class 485
PITFALL: Private Methods Are Effectively Not Inherited 486
Protected and Package Access 487
PITFALL: Forgetting about the Default Package 490
PITFALL: A Restriction on Protected Access ★ 490

 7.3 PROGRAMMING WITH INHERITANCE 493
TIP: Static Variables Are Inherited 493
TIP: “is a” versus “has a” 493
Access to a Redefined Base Method 493
PITFALL: You Cannot Use Multiple supers 495
The Class Object 496
The Right Way to Define equals 497
TIP: getClass versus instanceof ★ 499

Chapter Summary 504
Answers to Self-Test Exercises 505
Programming Projects 508

 Chapter 8 Polymorphism and Abstract Classes 515

 8.1 POLYMORPHISM 516
Late Binding 517
The final Modifier 519
ExAMPLE: Sales Records 520
Late Binding with toString 527
PITFALL: No Late Binding for Static Methods 528
Downcasting and Upcasting 529
PITFALL: Downcasting 533

22 Contents

TIP: Checking to See Whether Downcasting Is Legitimate ★ 533
A First Look at the clone Method 536
PITFALL: Sometimes the clone Method Return Type Is Object 537
PITFALL: Limitations of Copy Constructors ★ 538

 8.2 ABSTRACT CLASSES 541
Abstract Classes 542
PITFALL: You Cannot Create Instances of an Abstract Class 546
TIP: An Abstract Class Is a Type 547

Chapter Summary 548
Answers to Self-Test Exercises 548
Programming Projects 550

 Chapter 9 Exception Handling 555

 9.1 EXCEPTION HANDLING BASICS 557
try-catch Mechanism 557
Exception Handling with the Scanner Class 559
TIP: Exception Controlled Loops 560
Throwing Exceptions 562
ExAMPLE: A Toy Example of Exception Handling 564
Exception Classes 569
Exception Classes from Standard Packages 570
Defining Exception Classes 572
TIP: Preserve getMessage 576
TIP: An Exception Class Can Carry a Message of Any Type 578
Multiple catch Blocks 583
PITFALL: Catch the More Specific Exception First 585

 9.2 THROWING EXCEPTIONS IN METHODS 588
Throwing an Exception in a Method 588
Declaring Exceptions in a throws Clause 590
Exceptions to the Catch or Declare Rule 593
throws Clause in Derived Classes 594
When to Use Exceptions 595
Example: Retrieving a High Score 596
Event-Driven Programming ★ 599

 9.3 MORE PROGRAMMING TECHNIqUES FOR EXCEPTION
 HANDLING 601
PITFALL: Nested try-catch Blocks 601
The finally Block ★ 601
Rethrowing an Exception ★ 603
The AssertionError Class ★ 603

Contents 23

ArrayIndexOutOfBoundsException 604

Chapter Summary 604
Answers to Self-Test Exercises 605
Programming Projects 609

 Chapter 10 File I/O 613

 10.1 IntrOduCtIOn tO FIle I/O 614
Streams 614
Text Files and Binary Files 615

 10.2 text FIles 616
Writing to a Text File 616
PITFALL: A try Block Is a Block 622
PITFALL: Overwriting an Output File 622
Appending to a Text File 623
TIP: toString Helps with Text File Output 624
Reading from a Text File 625
Reading a Text File Using Scanner 625
Testing for the End of a Text File with Scanner 628
Reading a Text File Using BufferedReader 635
TIP: Reading Numbers with BufferedReader 639
Testing for the End of a Text File with BufferedReader 639
Path Names 641
Nested Constructor Invocations 642
System.in, System.out, and System.err 643

 10.3 the File Class 645
Programming with the File Class 645

 10.4 BInary FIles ★ 649
Writing Simple Data to a Binary File 650
UTF and writeUTF 654
Reading Simple Data from a Binary File 655
Checking for the End of a Binary File 660
PITFALL: Checking for the End of a File in the Wrong Way 661
Binary I/O of Objects 662
The Serializable Interface 663
PITFALL: Mixing Class Types in the Same File 666
Array Objects in Binary Files 666

 10.5 randOm aCCess tO BInary FIles ★ 668
Reading and Writing to the Same File 668
PITFALL: RandomAccessFile Need Not Start Empty 674

24 Contents

Chapter Summary 674
Answers to Self-Test Exercises 675
Programming Projects 679

 Chapter 11 Recursion 683

 11.1 RECURSIVE void METHODS 685
ExAMPLE: Vertical Numbers 685
Tracing a Recursive Call 688
A Closer Look at Recursion 691
PITFALL: Infinite Recursion 693
Stacks for Recursion ★ 694
PITFALL: Stack Overflow ★ 696
Recursion versus Iteration 696

 11.2 RECURSIVE METHODS THAT RETURN A VALUE 697
General Form for a Recursive Method That Returns a Value 698
ExAMPLE: Another Powers Method 698

 11.3 THINKING RECURSIVELY 703
Recursive Design Techniques 703
Binary Search ★ 704
Efficiency of Binary Search ★ 710
ExAMPLE: Finding a File 712

Chapter Summary 715
Answers to Self-Test Exercises 715
Programming Projects 720

 Chapter 12 UML and Patterns 725

 12.1 UML 726
History of UML 727
UML Class Diagrams 727
Class Interactions 728
Inheritance Diagrams 728
More UML 730

 12.2 PATTERNS ★ 731
Adaptor Pattern ★ 731
The Model-View-Controller Pattern ★ 732
ExAMPLE: A Sorting Pattern 733
Restrictions on the Sorting Pattern 739
Efficiency of the Sorting Pattern ★ 739

Contents 25

TIP: Pragmatics and Patterns 740
Pattern Formalism 740

Chapter Summary 741
Answers to Self-Test Exercises 741
Programming Projects 743

 Chapter 13 Interfaces and Inner Classes 747

 13.1 INTERFACES 749
Interfaces 749
Abstract Classes Implementing Interfaces 751
Derived Interfaces 751
PITFALL: Interface Semantics Are Not Enforced 753
The Comparable Interface 755
ExAMPLE: Using the Comparable Interface 756
Defined Constants in Interfaces 761
PITFALL: Inconsistent Interfaces 762
The Serializable Interface ★ 765
The Cloneable Interface 765

 13.2 SIMPLE USES OF INNER CLASSES 770
Helping Classes 770
TIP: Inner and Outer Classes Have Access to Each Other’s Private Members 771
ExAMPLE: A Bank Account Class 771
The .class File for an Inner Class 775
PITFALL: Other Uses of Inner Classes 776

 13.3 MORE ABOUT INNER CLASSES 776
Static Inner Classes 776
Public Inner Classes 777
TIP: Referring to a Method of the Outer Class 779
Nesting Inner Classes 781
Inner Classes and Inheritance 781
Anonymous Classes 782
TIP: Why Use Inner Classes? 784

Chapter Summary 785
Answers to Self-Test Exercises 785
Programming Projects 790

 Chapter 14 Generics and the ArrayList Class 795

 14.1 THE ArrayList CLASS 797
Using the ArrayList Class 798
TIP: Summary of Adding to an ArrayList 802

26 Contents

Methods in the Class ArrayList 803
The “for-each” Loop 806
ExAMPLE: Golf Scores 809
TIP: Use trimToSize to Save Memory 812
PITFALL: The clone Method Makes a Shallow Copy ★ 812
The Vector Class 813
Parameterized Classes and Generics 814
PITFALL: Nonparameterized ArrayList and Vector Classes 814

 14.2 GENERICS 814
Generic Basics 815
TIP: Compile with the -Xlint Option 817
ExAMPLE: A Generic Class for Ordered Pairs 817
PITFALL: A Generic Constructor Name Has No Type Parameter 820
PITFALL: You Cannot Plug in a Primitive Type for a Type Parameter 821
PITFALL: A Type Parameter Cannot Be Used Everywhere a Type Name

Can Be Used 821
PITFALL: An Instantiation of a Generic Class Cannot be an

Array Base Type 822
TIP: A Class Definition Can Have More Than One Type Parameter 823
PITFALL: A Generic Class Cannot Be an Exception Class 824
Bounds for Type Parameters 825
TIP: Generic Interfaces 828
Generic Methods ★ 828
Inheritance with Generic Classes ★ 830

Chapter Summary 832
Answers to Self-Test Exercises 832
Programming Projects 835

 Chapter 15 Linked Data Structures 839

 15.1 JAVA LINKED LISTS 842
ExAMPLE: A Simple Linked List Class 842
Working with Linked Lists 846
PITFALL: Privacy Leaks 851
Node Inner Classes 852
ExAMPLE: A Generic Linked List 855
PITFALL: Using Node Instead of Node<T> 860
The equals Method for Linked Lists 860

 15.2 COPY CONSTRUCTORS AND THE clone METHOD ★ 862
Simple Copy Constructors and clone Methods ★ 862
Exceptions ★ 863

Contents 27

PITFALL: The clone Method Is Protected in object ★ 865
TIP: Use a Type Parameter Bound for a Better clone ★ 866
ExAMPLE: A Linked List with a Deep Copy clone Method ★ 870
TIP: Cloning Is an “All or Nothing” Affair 873

 15.3 Iterators 873
Defining an Iterator Class 874
Adding and Deleting Nodes 879

 15.4 VarIatIons on a LInked LIst 884
Doubly Linked List 884
The Stack Data Structure 893
The Queue Data Structure 895
Running Times and Big-O Notation 898
Efficiency of Linked Lists 903

 15.5 HasH tabLes wItH CHaInIng 904
A Hash Function for Strings 905
Efficiency of Hash Tables 908

 15.6 sets 909
Fundamental Set Operations 910
Efficiency of Sets Using Linked Lists 915

 15.7 trees 916
Tree Properties 916
ExAMPLE: A Binary Search Tree Class ★ 919
Efficiency of Binary Search Trees ★ 924

Chapter Summary 925
Answers to Self-Test Exercises 926
Programming Projects 931

 Chapter 16 Collections, Maps and Iterators 935

 16.1 CoLLeCtIons 936
Wildcards 938
The Collection Framework 938
PITFALL: Optional Operations 944
TIP: Dealing with All Those Exceptions 945
Concrete Collection Classes 946
Differences between ArrayList<T> and Vector<T> 956
Nonparameterized Version of the Collection Framework ★ 956
PITFALL: Omitting the <T> 957

28 Contents

 16.2 MAPS 957
Concrete Map Classes 960

 16.3 ITERATORS 964
The Iterator Concept 964
The Iterator<T> Interface 964
TIP: For-Each Loops as Iterators 967
List Iterators 968
PITFALL: next Can Return a Reference 970
TIP: Defining Your Own Iterator Classes 972

Chapter Summary 973
Answers to Self-Test Exercises 973
Programming Projects 974

 Chapter 17 Swing I 981

 17.1 EVENT-DRIVEN PROGRAMMING 983
Events and Listeners 983

 17.2 BUTTONS, EVENTS, AND OTHER SWING BASICS 984
ExAMPLE: A Simple Window 985
PITFALL: Forgetting to Program the Close-Window Button 990
Buttons 991
Action Listeners and Action Events 992
PITFALL: Changing the Heading for actionPerformed 994
TIP: Ending a Swing Program 994
ExAMPLE: A Better Version of Our First Swing GUI 995
Labels 998
Color 999
ExAMPLE: A GUI with a Label and Color 1000

 17.3 CONTAINERS AND LAYOUT MANAGERS 1002
Border Layout Managers 1003
Flow Layout Managers 1006
Grid Layout Managers 1007
Panels 1011
ExAMPLE: A Tricolor Built with Panels 1012
The Container Class 1016
TIP: Code a GUI’s Look and Actions Separately 1019
The Model-View-Controller Pattern ★ 1020

Contents 29

 17.4 MENUS AND BUTTONS 1021
ExAMPLE: A GUI with a Menu 1021
Menus, Menu Items, and Menu Bars 1021
Nested Menus ★ 1026
The AbstractButton Class 1026
The setActionCommand Method 1029
Listeners as Inner Classes ★ 1030

 17.5 TEXT FIELDS AND TEXT AREAS 1033
Text Areas and Text Fields 1034
TIP: Labeling a Text Field 1040
TIP: Inputting and Outputting Numbers 1040
A Swing Calculator 1041

Chapter Summary 1046
Answers to Self-Test Exercises 1047
Programming Projects 1053

 Chapter 18 Swing II 1057

 18.1 WINDOW LISTENERS 1058
ExAMPLE: A Window Listener Inner Class 1060
The dispose Method 1063
PITFALL: Forgetting to Invoke setDefaultCloseOperation 1064
The WindowAdapter Class 1064

 18.2 ICONS AND SCROLL BARS 1066
Icons 1066
Scroll Bars 1072
ExAMPLE: Components with Changing Visibility 1077

 18.3 THE Graphics CLASS 1081
Coordinate System for Graphics Objects 1081
The Method paint and the Class Graphics 1082
Drawing Ovals 1087
Drawing Arcs 1087
Rounded Rectangles ★ 1091
paintComponent for Panels 1092
Action Drawings and repaint 1092
Some More Details on Updating a GUI ★ 1098

