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This book is designed to serve as a textbook and reference for programming in the 
Java language. Although it does include programming techniques, it is organized 
around the features of the Java language rather than any particular curriculum of 
programming techniques. The main audience I had in mind when writing this book 
was undergraduate students who have not had extensive programming experience with 
the Java language. As such, it would be a suitable Java text or reference for either a first 
programming course or a later computer science course that uses Java. This book is 
designed to accommodate a wide range of users. The introductory chapters are written 
at a level that is accessible to beginners, while the boxed sections of those chapters 
serve to quickly introduce more experienced programmers to basic Java syntax. Later 
chapters are still designed to be accessible, but are written at a level suitable for students 
who have progressed to these more advanced topics.

CHANGES IN THIS EDITION

This sixth edition presents the same programming philosophy as the fifth edition. For 
instructors, you can teach the same course, presenting the same topics in the same 
order with no changes in the material covered or the chapters assigned. The changes to 
this edition consist almost exclusively of supplementary material added to the chapters 
of the previous edition, namely: 

■ An introduction to functional programming with Java 8’s lambda expressions. 
■ Additional content and examples on looping, networking, and exception handling. 
■ Introduction to building GUIs using JavaFX.
■ Fifteen new programming projects. 
■ Five new video notes for a total of 51 video notes. These videos cover specific topics 

and offer solutions to selected programming projects. The videos walk students 
through the process of problem solving and coding to reinforce key programming 
concepts. An icon appears in the margin of the book when a video is available about 
the corresponding topic in the text. 

NO NONSTANDARD SOFTWARE

Only classes in the standard Java libraries are used. No nonstandard software is used 
anywhere in the book.

JAVA COVERAGE 

All programs have been tested with Java 8. Oracle is not proposing any changes to 
future versions of Java that would affect the approach in this book.
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6     Preface

OBJECT-ORIENTED PROGRAMMING 

This book gives extensive coverage of encapsulation, inheritance, and polymorphism 
as realized in the Java language. The chapters on Swing GUIs provide coverage of and 
extensive practice with event driven programming. 

FLEXIBILITY IN TOPIC ORDERING 

This book allows instructors wide latitude in reordering the material. This is important 
if a book is to serve as a reference. It is also in keeping with my philosophy of writing 
books that accommodate themselves to an instructor’s style rather than tying the 
instructor to an author’s personal preference of topic ordering. With this in mind, each 
chapter has a prerequisite section at the beginning; this section explains what material 
must be covered before doing each section of the chapter. Starred sections, which are 
explained next, further add to flexibility.

STARRED SECTIONS 

Each chapter has a number of starred (★) sections, which can be considered optional. 
These sections contain material that beginners might find difficult and that can be 
omitted or delayed without hurting the continuity of the text. It is hoped that eventually 
the reader would return and cover this material. For more advanced students, the 
starred sections should not be viewed as optional.

ACCESSIBLE TO STUDENTS 

It is not enough for a book to present the right topics in the right order. It is not even 
enough for it to be clear and correct when read by an instructor or other expert. The 
material needs to be presented in a way that is accessible to the person who does not yet 
know the content. Like my other textbooks that have proven to be very popular, this 
book was written to be friendly and accessible to the student.

SUMMARY BOXES 

Each major point is summarized in a short boxed section. These boxed sections are 
spread throughout each chapter. They serve as summaries of the material, as a quick 
reference source, and as a way to quickly learn the Java syntax for features the reader 
knows about in general but for which he or she needs to know the Java particulars.

SELF-TEST EXERCISES

Each chapter contains numerous Self-Test Exercises at strategic points in the 
chapter. Complete answers for all the Self-Test Exercises are given at the end of 
each chapter.
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VIDEO NOTES

VideoNotes are step-by-step videos that guide readers through the solution to an end-of-
chapter problem or further illuminate a concept presented in the text. Icons in the text 
indicate where a VideoNote enhances a topic. Fully navigable problems allow for self-
paced instruction. VideoNotes are located at www.pearsonglobaleditions.com/savitch.

OTHER FEATURES 

Pitfall sections, programming tip sections, and examples of complete programs with 
sample I/O are given throughout each chapter. Each chapter ends with a summary 
section and a collection of programming projects suitable to assign to students.

HOW TO ACCESS INSTRUCTOR AND STUDENT RESOURCE 
MATERIALS

Online Practice and Assessment with . MyProgrammingLab 
helps students fully grasp the logic, semantics, and syntax of programming. Through 
practice exercises and immediate, personalized feedback, MyProgrammingLab improves 
the programming competence of beginning students who often struggle with the basic 
concepts and paradigms of popular high-level pro- gramming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hun- 
dreds of small practice problems organized around the structure of this textbook. For 
students, the system automatically detects errors in the logic and syntax of their code 
submissions and offers targeted hints that enable students to figure out what went 
wrong—and why. For instructors, a comprehensive gradebook tracks correct and 
incorrect answers and stores the code inputted by students for review.

For a full demonstration, to see feedback from instructors and students, or to get 
started using MyProgrammingLab in your course, visit www.myprogramminglab.com.

SUPPORT MATERIAL

The following support materials are available to all users of this Global Editions book 
at www.pearsonglobaleditions.com/savitch:

■ Source code from the book

The following resources are available to qualified instructors only at www.
pearsonglobaleditions.com/savitch. Please contact your local sales representative for 
access information:

■ Instructor’s Manual with Solutions
■ PowerPoint® slides

ACKNOWLEDGMENTS
Numerous individuals have contributed invaluable help and support in making this 
book happen: My former editor, Susan Hartman at Addison-Wesley, first conceived of 
the idea for this book and worked with me on the first editions; My current  editor, Matt 

VideoNote

http://www.pearsonglobaleditions.com/savitch
http://www.myprogramminglab.com
http://www.pearsonglobaleditions.com/savitch
http://www.pearsonglobaleditions.com/savitch
http://www.pearsonglobaleditions.com/savitch
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Goldstein, provided support and inspiration for getting subsequent editions reviewed, 
revised, and out the door; Kelsey Loanes, Rose Kernan, Demetrius Hall, and the other 
fine people at Pearson also provided valuable assistance and encouragement. 

The following reviewers provided corrections and suggestions for this book. Their 
contributions were a great help. I thank them all. In alphabetical order they are:

Jim Adams Chandler-Gilbert Community College

Gerald W. Adkins Georgia College & State University

Dr. Bay Arinze Drexel University

Tamara Babaian Bentley University

James Baldo George Mason University

Prof. Richard G. Baldwin Austin Community College

Kevin Bierre Rochester Institute of Technology

Jon Bjornstad Gavilan College

Janet Brown-Sederberg Massasoit Community College

Tom Brown Texas A&M University, Commerce

Charlotte Busch Texas A&M University, Corpus Christi

Stephen Chandler NW Shoals Community College

Hong Cheng Southern Arkansas University

KY Daisy Fan Cornell University

Adrienne Decker University of Buffalo

Brian Downs Century College

Jeffrey Edgington University of Denver

Keith Frikken Miami University

Ahmad Ghafarian North Georgia College & State University

Arthur Geis College of DuPage

Massoud Ghyam University of Southern California

Susan G. Glenn Gordon College

Nigel Gwee Louisiana State University

Judy Hankins Middle Tennessee State University

May Hou Norfolk State University

Sterling Hough NHTI

Chris Howard DeVry University

Eliot Jacobson University of California, Santa Barbara

Balaji Janamanchi Texas Tech University

Suresh Kalathur Boston University

Edwin Kay Lehigh University

Dr. Clifford R. Kettemborough IT Consultant and Professor
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Frank Levey Manatee Community College
Xia Lin Drexel University
Mark M. Meysenburg Doane College
Sridhar P. Nerur The University of Texas at Arlington
Hoang M. Nguyen Deanza College
Rick Ord University of California, San Diego
Prof. Bryson R. Payne North Georgia College & State University
David Primeaux Virginia Commonwealth University
Neil Rhodes University of California, San Diego
W. Brent Seales University of Kentucky
Lili Shashaani Duquesne University
Riyaz Sikora The University of Texas at Arlington
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Special thanks goes to Kenrick Mock (University of Alaska Anchorage) who 
executed the updating of this edition. He once again had the difficult job of satisfying 
me, the editor, and himself. I thank him for a truly excellent job.
 Walter Savitch 

Pearson wishes to thank and acknowledge the following people for their work on the 
Global Edition:

Contributors
Vikas Deep Dhiman Amity University
Madhurima Hooda Amity University

Reviewers
Manasa Rengarer NMAM Institute of Technology
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